/* Copyright Joyent, Inc. and other Node contributors. All rights reserved. * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include "uv.h" #include "internal.h" #include "tree.h" #include "handle-inl.h" void uv_update_time(uv_loop_t* loop) { DWORD ticks; ULARGE_INTEGER time; ticks = GetTickCount(); time.QuadPart = loop->time; /* GetTickCount() can conceivably wrap around, so when the current tick */ /* count is lower than the last tick count, we'll assume it has wrapped. */ /* uv_poll must make sure that the timer can never overflow more than */ /* once between two subsequent uv_update_time calls. */ time.LowPart = ticks; if (ticks < loop->last_tick_count) time.HighPart++; /* Remember the last tick count. */ loop->last_tick_count = ticks; /* The GetTickCount() resolution isn't too good. Sometimes it'll happen */ /* that GetQueuedCompletionStatus() or GetQueuedCompletionStatusEx() has */ /* waited for a couple of ms but this is not reflected in the GetTickCount */ /* result yet. Therefore whenever GetQueuedCompletionStatus times out */ /* we'll add the number of ms that it has waited to the current loop time. */ /* When that happened the loop time might be a little ms farther than what */ /* we've just computed, and we shouldn't update the loop time. */ if (loop->time < time.QuadPart) loop->time = time.QuadPart; } void uv__time_forward(uv_loop_t* loop, uint64_t msecs) { loop->time += msecs; } static int uv_timer_compare(uv_timer_t* a, uv_timer_t* b) { if (a->due < b->due) return -1; if (a->due > b->due) return 1; /* * compare start_id when both has the same due. start_id is * allocated with loop->timer_counter in uv_timer_start(). */ if (a->start_id < b->start_id) return -1; if (a->start_id > b->start_id) return 1; return 0; } RB_GENERATE_STATIC(uv_timer_tree_s, uv_timer_s, tree_entry, uv_timer_compare); int uv_timer_init(uv_loop_t* loop, uv_timer_t* handle) { uv__handle_init(loop, (uv_handle_t*) handle, UV_TIMER); handle->timer_cb = NULL; handle->repeat = 0; return 0; } void uv_timer_endgame(uv_loop_t* loop, uv_timer_t* handle) { if (handle->flags & UV__HANDLE_CLOSING) { assert(!(handle->flags & UV_HANDLE_CLOSED)); uv__handle_close(handle); } } static uint64_t get_clamped_due_time(uint64_t loop_time, uint64_t timeout) { uint64_t clamped_timeout; clamped_timeout = loop_time + timeout; if (clamped_timeout < timeout) clamped_timeout = (uint64_t) -1; return clamped_timeout; } int uv_timer_start(uv_timer_t* handle, uv_timer_cb timer_cb, uint64_t timeout, uint64_t repeat) { uv_loop_t* loop = handle->loop; uv_timer_t* old; if (handle->flags & UV_HANDLE_ACTIVE) { RB_REMOVE(uv_timer_tree_s, &loop->timers, handle); } handle->timer_cb = timer_cb; handle->due = get_clamped_due_time(loop->time, timeout); handle->repeat = repeat; handle->flags |= UV_HANDLE_ACTIVE; uv__handle_start(handle); /* start_id is the second index to be compared in uv__timer_cmp() */ handle->start_id = handle->loop->timer_counter++; old = RB_INSERT(uv_timer_tree_s, &loop->timers, handle); assert(old == NULL); return 0; } int uv_timer_stop(uv_timer_t* handle) { uv_loop_t* loop = handle->loop; if (!(handle->flags & UV_HANDLE_ACTIVE)) return 0; RB_REMOVE(uv_timer_tree_s, &loop->timers, handle); handle->flags &= ~UV_HANDLE_ACTIVE; uv__handle_stop(handle); return 0; } int uv_timer_again(uv_timer_t* handle) { uv_loop_t* loop = handle->loop; /* If timer_cb is NULL that means that the timer was never started. */ if (!handle->timer_cb) { return UV_EINVAL; } if (handle->flags & UV_HANDLE_ACTIVE) { RB_REMOVE(uv_timer_tree_s, &loop->timers, handle); handle->flags &= ~UV_HANDLE_ACTIVE; uv__handle_stop(handle); } if (handle->repeat) { handle->due = get_clamped_due_time(loop->time, handle->repeat); if (RB_INSERT(uv_timer_tree_s, &loop->timers, handle) != NULL) { uv_fatal_error(ERROR_INVALID_DATA, "RB_INSERT"); } handle->flags |= UV_HANDLE_ACTIVE; uv__handle_start(handle); } return 0; } void uv_timer_set_repeat(uv_timer_t* handle, uint64_t repeat) { assert(handle->type == UV_TIMER); handle->repeat = repeat; } uint64_t uv_timer_get_repeat(const uv_timer_t* handle) { assert(handle->type == UV_TIMER); return handle->repeat; } DWORD uv_get_poll_timeout(uv_loop_t* loop) { uv_timer_t* timer; int64_t delta; /* Check if there are any running timers */ timer = RB_MIN(uv_timer_tree_s, &loop->timers); if (timer) { uv_update_time(loop); delta = timer->due - loop->time; if (delta >= UINT_MAX >> 1) { /* A timeout value of UINT_MAX means infinite, so that's no good. But */ /* more importantly, there's always the risk that GetTickCount wraps. */ /* uv_update_time can detect this, but we must make sure that the */ /* tick counter never overflows twice between two subsequent */ /* uv_update_time calls. We do this by never sleeping more than half */ /* the time it takes to wrap the counter - which is huge overkill, */ /* but hey, it's not so bad to wake up every 25 days. */ return UINT_MAX >> 1; } else if (delta < 0) { /* Negative timeout values are not allowed */ return 0; } else { return (DWORD)delta; } } else { /* No timers */ return INFINITE; } } void uv_process_timers(uv_loop_t* loop) { uv_timer_t* timer; /* Call timer callbacks */ for (timer = RB_MIN(uv_timer_tree_s, &loop->timers); timer != NULL && timer->due <= loop->time; timer = RB_MIN(uv_timer_tree_s, &loop->timers)) { RB_REMOVE(uv_timer_tree_s, &loop->timers, timer); if (timer->repeat != 0) { /* If it is a repeating timer, reschedule with repeat timeout. */ timer->due = get_clamped_due_time(timer->due, timer->repeat); if (timer->due < loop->time) { timer->due = loop->time; } if (RB_INSERT(uv_timer_tree_s, &loop->timers, timer) != NULL) { uv_fatal_error(ERROR_INVALID_DATA, "RB_INSERT"); } } else { /* If non-repeating, mark the timer as inactive. */ timer->flags &= ~UV_HANDLE_ACTIVE; uv__handle_stop(timer); } timer->timer_cb((uv_timer_t*) timer, 0); } }